.RU

Реферат по органической химии тема: получение алканов,алкенов,алкинов




РЕФЕРАТ ПО

Органической химии


ТЕМА:

ПОЛУЧЕНИЕ АЛКАНОВ,АЛКЕНОВ,АЛКИНОВ.

ВАЖНЕЙШИЕ ПРЕДСТАВИТЕЛИ.

ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ.


План.



    1. АЛКАНЫ (предельные углеводороды).




    1. МЕТОДЫ ПОЛУЧЕНИЯ АЛКАНОВ.




    1. ПРЕДСТАВИТЕЛИ АЛКАНОВ.




    1. АЛКЕНЫ (этиленовые углеводороды).




    1. ^ МЕТОДЫ ПОЛУЧЕНИЯ АЛКЕНОВ.




    1. ПРЕДСТАВИТЕЛИ АЛКЕНОВ.




    1. АЛКИНЫ (ацетиленовые углеводороды).




    1. ^ МЕТОДЫ ПОЛУЧЕНИЯ АЛКИНОВ.




    1. ПРЕДСТАВИТЕЛИ АЛКИНОВ.


4. ПРИМЕНЕНИЕ АЛКАНОВ, АЛКЕНОВ, АЛКИНОВ.


1.1 ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (алканы).


Предельными углеводородами (алканами) называются соединения, состоящие из атомов углерода и водорода, соединенных между собой только Q-связями, и не содержащие циклов. В алканах атомы углерода находятся в степени гибридизации sp3.

^ 1.2 Методы получения алканов.

Главным природным источником предельных углеводородов яв­ляется нефть, а для первых членов гомологического ряда — природный газ. Однако выделение индивидуальных соединений из нефти или продуктов ее крекинга- весьма трудоемкая, а часто и невыполнимая задача, поэтому приходится прибегать к синтетическим методам полу­чения.

1. Алканы образуются при действии металлического натрия на моногалогенпроизводные — реакция Вюрца:

НзС-СН2—Вг + Вг-СН2-СH3 СНз-СН2—СН2—СНз + 2NaBr

Если взяты разные галогенпроизводные, то образуется смесь трех различных алканов, так как вероятность встречи в реакционном комплексе молекул одинаковых или разных равна, а реакционная способность их близка:

3C2H5I + 3CH3CH2CH2IС4Н10 + С5Н12 + С6Н14 + 6NaI

2. Алканы могут быть получены при восстановлении алкенов или алкинов водородом в присутствии катализаторов :

НзС-СН=СН-СНз НзС-СН2-СН2-СНз


3. Самые разнообразные производные алканов могут быть восста­новлены при высокой температуре иодистоводородной кислотой:


H3C H3C

CHBr +2HI CH2 + HBr + I2

H3C H3C


Однако в этих случаях иногда наблюдается частичная изомеризация углеродного скелета — образуются более разветвленные алканы.


4. Алканы могут быть получены при сплавлении солей карбоновых кислот со щелочью. Образующийся при этом алкан содержит на один атом углерода меньше, чем исходная карбоновая кислота:


O

СНз—С +NaOH CH4+Na2C03

ONa

^ 1.3 Представители алканов

Согласно теории строения А. М. Бутлерова, физические свойства веществ зависят от их состава и строения. Рассмотрим на примере предельных углеводородов изменение физических свойств в гомоло­гическом ряду .

Четыре первых члена гомологического ряда, начиная с метана, газообразные вещества. Начиная с пентана и выше, нормальные угле­водороды представляют собой жидкости. Метан сгущается в жидкость лишь при —162 °С. У последующих членов ряда температура кипения возрастает, причем при переходе к следующему гомологу она воз­растает приблизительно на 25°.

Плотность углеводородов при температуре кипения для нижних членов ряда увеличивается сначала быстро, а затем все медленнее: от 0,416 у метана до величины, несколько большей 0,78 .Температура плавления нормальных углеводородов в гомологичес­ком ряду увеличивается медленно. Начиная с углеводорода С16Н34, высшие гомологи при обычной температуре — вещества твердые.

Температура кипения у всех разветвленных алканов ниже, чем у нормальных алканов, и притом тем ниже, чем более разветвлена углеродная цепь молекулы. Это видно, например, из сравнения температур кипения трех изомерных пентанов. Наоборот, температура плавления оказывается самой высокой у изомеров с макси­мально разветвленной углеродной цепью. Так, из всех изомерных октанов лишь гекса-метилэтап (СН3)3С—С (СНз)3 является твердым веществом уже при обычной темпе­ратуре (т. пл. 104° С). Эти закономерности объясняются следующими причинами.

Превращению жидкости в газ препятствуют ван-дер-ваальсовы силы взаимодей­ствия между атомами отдельных молекул. Поэтому чем больше атомов в молекуле, тем выше температура кипения вещества, следовательно, в гомологическом ряду тем­пература кипения должна равномерно расти. Если сравнить силы взаимодействия молекул н-пентана и неопентана, то ясно, что эти силы больше для молекулы с нор­мальной цепью углеродных атомов, чем для разветвленных, так как в молекуле неопентана центральный атом вообще выключен из взаимодействия.

Главным фактором, влияющим на температуру плавления вещества, является плотность упаковки молекулы в кристаллической решетке. Чем симметричнее моле­кула, тем плотнее ее упаковка в кристалле и тем выше температура плавления (у н-пентана —132° C, у неопентана —20° С)


^ 2.1 АЛКЕНЫ (этиленовые углеводороды, олефины)

Углеводороды, в молекуле которых помимо простых Q-связей углерод — углерод и углерод — водород имеются углерод-углеродные

-связи, называются непредельными. Так как образование -связи формально эквивалентно потере молекулой двух атомсв годорода, то непредельные углеводороды содержат на 2п атомов иодорода меньше, чем предельные, где n число - связей


С6H14 C6H12C6H10C6H8C6H6


Ряд, члены которого отличаются друг от друга на (2Н)n, называется изологическим рядом. Так, в приведенной выше схеме изологами являются гексан, гексены, гексадиены, гексины, гексатриены и бензол.

Углеводороды, содержащие одну - связь (т. е. двойную связь), называваются алкенами (олефинами) или, по первому члену ряда - этилену, этиленовыми углеводородами. Общая формула их гомологического ряда — CnH2n


^ 2.2 Методы получения алкенов

При действии спиртовых растворов едких щелочей на галогенпроизводные:отщепляется галогенводород и образуется двойная связь:


H3C-CH2-CH2BrH3C-CH=CH2+NaBr+H2O

Бромистый пропил Пропилен


Если в α-положении к атому углерода, связанному с галогеном, находится третичный, вторичный и первичный атомы водорода, то преимущественно отщепляется третичный атом водорода, в меньшей степени вторичный и тем более первичный (правило Зайцева):


CH3 CH3



CH2 CH2



H3C-C-CI H3C-C + KCL + H2O



CH C



H3C CH3 H3C CH3

2,3-Диметил-3-хлорпентан 2,3-Диметелпентен-2


Это связано с термодинамической устойчивостью образующихся алке-нoв. Чем больше заместителей имеет алкен у винильных атомов углерода, тем выше его устойчивость.

^ 2. Действием на спирты водоотнимающих средств: а) при про­пускании спиртов над окисью алюминия при 300—400° С.


НзС-СН-СН2.-СНзНзС-СН=СН-СНз

OH Бутен-2

Втор-Бутиловый спирт


б) при действии на спирты серной кислоты в мягких условиях реакция идет через промежуточное образование эфиров серной кислоты:


НзС-СН-СНз НзС-СН-СН3 H3C-CH=CH2

OH O-SO3H

изопропнлопып спирт

При дегидратации спиртов в жестких условиях в кислых средах наблюдается та же закономерность в отщеплении водородных атомов разного типа, как и при отщеплении галогенводорода.

Первой стадией этого процесса является протонирование спирта, после чего от­щепляется молекула воды и образуется карбкатион:


СНз-СН2-СН-СНз + H CH3-CH2-CH-CH3 CH3-CH-CH-

OH O H

H H

CH3CH3-CH-CH-CH3CH3-CH=CH-CH3


Образовавшийся карбкатион стабилизируется выбросом протона из соседнего поло­жения с образованием двойной связи (β-элиминирование). В этом слу­чае тоже образуется наиболее разветвленный алкен (термодинамически более устойчивыи). При этом процессе часто наблюдаются перегруппировки карбкатионов связанные с изомеризацией углеродного скелета:


CH3 CH3

CH3 C-CH – CH3^ CH3 C-CH-CH3

CH3 OH CH3


CH3 CH3 CH3 CH3

C-CH C=C

CH3 CH3 CH3 CH3


3. При действии Zn или Mg на дигалогенпроизводные с двумя

атомами галогена у соседних атомов углерода:


CI


H3C – C CH2CIH3C - C - CH2+MgCI2




CH3 CH3

1,2-дихлор-2-метал- изобутилен

пропан


^ 4. Гидрированием ацетиленовых углеводородов над катализато­рами с пониженной активностью (Fe или «отравленные», т. е. обрабо­танные серусодержащнми соединениями для понижения каталити­ческой активности, Pt и Pd):

НСС-СН(СНз)2Н2С=СН-СН(СНз)2


^ 2.3 Представители алкенов.

Как и алкаиы, низшие гомологи ряда простейших алкенов при обычных условиях — газы, а начиная с С5 — низкокипящие жидкости (см. табл. ).








т.пл.,

Т.

d4

Формула

Название

°с

Кип.,°С

Ch2=CH2

Этилен

-169

-104

0,5660 (при —102° С)

СН3СН=СН3

Пропилен

-185

-47

0,6090 (при —47" С)

СНзСНзСН=СН2 СНз-СН=СН-СНз

(цис)Бутен-1

-130

-5


0,6696 (при —5° С) 0,6352 (приО°С)

-139

+4

(цис)









СНз-СН=СН-СНз

(транс)-Бутеп-2

-105

+1

0,6361 (при 0°С)

(транс)









(СНз)зС=СН2

Иэобутилен

-140

-7

0,6407 (при 0°С)


Все алкены, как и алканы, практически нерастворимы в воде и хорошо растворимы в других органических растворителях, за исключением метилового спирта; все они имеют меньшую плотность, чем вода.


^ 3.1 АЛКИНЫ (ацетиленовые углеводороды)


Алкинами называются углеводороды, содержащие кроме Q-связей две

-связи (тройную связь) у одной пары углеродных атомов. Общая формула гомологического ряда ацетиленовых углеводородов СnН2n-2 образование одной-связи формально эквивалентно потере двух атомов водорода.

Различными физическими методами доказано, что ацетилен C2H2 — I простейший представитель гомологического ряда алкинов — имеет линейную молекулу, в которой длина углерод-углеродной тройной связи равна 1,20 А, а длина связей углерод—водород 1,06 A.

Связи С—Н в ацетилене относятся к числу Q-связей, образованных путем перекрывапия s-орбитали водорода с гибридизованной sp- орбиталью углерода; в молекуле имеется одна углерод-углеродная а-связь (образованная перекрыванием двух гибридизованных sp-орби-талей углерода) и две углерод-углеродные -связи — результат перекрывания двух взаимно перпендикулярных пар «чистых» p-орбиталей (р иР) соседних атомов углерода. Валентные углы в ацетилене на основании этой модели равны 180° и молекула имеет линейную конформацию, что делает невозможной цис-транс-изомерию при тройной связи.


^ 3.2Методы получения алкинов.

Наиболее общим способом получения ацетиленовых углеводородов является действие спиртового раствора щелочей на дигалогенпроиз-водные предельных углеводородов с вицинальным (а) или геминаль-ным (б) расположением атомов галогена

  1. CH2Br –CH2Br -> СНСН + 2НВг

б) СНз—СН2—СНСl2 ->СHз-ССН+2ИСl

CH3-CH2-CCl2-CH3 -> СНз-С С-СНз + 2НС1

Так как вицинальные дигалогенпроизводные обычно получают присоединением галогенов к этиленовым углеводородам, то реакцию (а) можно рассматривать как реакцию превращения этиленовых угле­водородов в ацетиленовые.

Геминальные дигалогенпроизводные (оба атома галогена у одного атома углерода) являются производными кетонов или альдегидов и, следовательно, с помощью реакций (б) можно осуществить переход от карбонильных соединений к алкинам. При отщеплении галогенводородов действует уже известное правило Зайцева, что водород отщеп­ляется от углеродного атома, содержащего меньшее количество атомов водорода.

Ацетилен можно получать непосредственно при высокотемператур­ном крекинге (термическом или электротермическом) метана или более , сложных углеводородов:

2СН4Н-СС-Н + ЗН2


^ 3.3 Представители алкинов.


Как у алканов и алкенов, низшие члены гомологического ряда алкинов в обычных условиях—газообразные вещества. Данные табл. 22 показывают, что основные физико-химические характеристики углеводородов рассмотренных классов мало отличаются друг от друга (см. таблицу).




Формула

Название

Т. пл., °С

Т кип., °С

D4

HCCH

CH3CCH

HCC- CH2CH3 СНзСCСНз

Ацетилен Пропин

Бутин-1

Бутин-2

-82

-105

-137

-33

-84

(возг,-23) 9

27

0,6200 (при-84° С) 0,6785 (при -27° С) 0;669б (при -10° С) 0,6880 (при 25° С)



^ 4. ПРИМЕНЕНИЕ АЛКАНОВ, АЛКИНОВ, АЛКЕНОВ


Алкены вместе с алканами, ацетиленом и ароматическими уг­леводородами являются одним из главных сырьевых источников промышленности тяжелого (многотоннажного) органического син­теза.

Этилен в громадных количествах используется для переработки в полиэтилен и этиловый спирт, он идет на переработку в этилен-гликоль и употребляется в теплицах для ускорения вызревания плодов.

Пропилен перерабатывается в полипропилен, ацетон, изопропиловый спирт.

Ацетилен играет исключи­тельно важную роль в про­мышленности. Его мировое производство достигает не­скольких миллионов тонн. Громадное количество ацети­лена используется для свар­ки металлов, при его горении

в кислороде температура достигает 2800° С. Это значительно более высокая температура, чем при сгорании водорода в кислороде, не говоря уже о сгорании метана. Причина этого в значительно меньшей теплоемкости СО2 по сравнению с Н2О, которой образуется больше при сгорании алканов, чем алкинов:

2СзН6 + 7O2 -> 4СО2 + 6Н2О

2С2 Н2 + 5O2 -> 4СО2 + ЗН2О

Неприятный запах ацетилена, получаемого из карбида, обусловлен примесями PH3 и AsH3, чистый ацетилен пахнет, как и все низшие углеводороды (бензин). Ацетилен и его смеси с воздухом крайне взрывчаты; ацетилен хранят и транспортируют в баллонах в виде ацетоновых растворов, пропитывающих пористые материалы.

^ НЕФТЬ И ЕЕ ПЕРЕРАБОТКА

Состав нефти. Главным природным источником предельных углеводородов является нефть. Состав нефтей различается в зависимости от месторождения, однако все нефти при простой перегонке обычно разделяются на следующие фракции: газовая фракция, бензин, реак­тивное топливо, керосин, дизельное топливо, парафин, нефтяной гудрон.

^ Газовая фракция (т. кип. до40◦C) содержит нормальные и развет­вленные алканы до С,, в основном пропан и бутаны. Природный газ из газовых месторождений состоит в основном из метана и этана.

^ Бензин авиационный (т. кип. 40—180 °С) содержит углеводороды С6 — С10 В бензине обнаружено более 100 индивидуальных соедине­ний, в число которых входят нормальные и разветвленные алканы, циклоалканы и алкилбензолы (арены).

^ Реактивное топливо (т. кип. 150—280°С).

Керосин тракторный (т, кип. 110—300 °С) содержит углеводороды С7—С14.

Дизельное топливо (т. кип. 200—330 °С), в состав которого входят углеводороды C13 — C18, в больших масштабах подвергается крекингу, превращаясь в алканы (и алкены) с меньшей молекулярной массой (см. ниже).

^ Смазочные масла (т. кип. 340—400°С) содержат углеводороды C18 — C25.

Парафин нефтяной (т. кип. 320—500 °С), в его состав входят угле­водороды С26—С38, из которых выделяют вазелин. Остаток после перегонки обычно называют асфальтом или гудроном.

Помимо углеводородов самых различных классов в нефти содер­жатся кислородные, сернистые и азотсодержащие вещества; иногда их суммарное содержание доходит до нескольких процентов.

В настоящее время наиболее признанной является теория органического происхождения нефти как продукта превращения растительных и животных остатков. Это подтверждается тем, что в образцах нефтей были найдены остатки порфиринов, стероиды растительного и животного происхождения и так называемый «хемофоссилий» — самые разнообразные фрагменты, содержащиеся в планк­тоне.

Хотя общепризнанно, что нефть является наиболее ценным природ­ным источником химического сырья, до сих пор основное количество нефти и нефтепродуктов сгорает в двигателях внутреннего сгорания (бензин), дизелях и реактивных двигателях (керосин).

^ Моторное топливо. Октановое число. Бензины различного проис­хождения по-разному ведут себя в двигателях внутреннего сгорания.

Стремясь к максимальному повышению мощности двигателя при малых габаритах и массе, стараются увеличить степень сжатия горючей смеси в цилиндре. Однако в быстроходных четырехтактных двигателях, работающих с принудительным зажиганием, при этом иногда происхо­дит преждевременное воспламенение смеси — детонация. Это снижает мощность мотора и ускоряет его износ. Это явление связано с составом жидкого топлива, так как углеводороды разного строения при исполь­зовании их в качестве моторного топлива ведут себя различно. Наихуд­шие показатели — у парафинов нормального строения.

За стандарт горючего вещества с большой способностью к детона­ции принят нормальный гептан. Чем больше разветвлена углеродная цепь парафинового углеводорода, тем лучше протекает сгорание его в цилиндре и тем большей степени сжатия горючей смеси можно достичь. В качестве стандарта моторного топлива принят 2, 2, 4-триметилпентан (который обычно называют изооктаном) с хорошими антидетонационными свойствами. Составляя в различных пропорциях смеси этого октана с я-гептапом, сравнивают их поведение в моторе с поведением испытуемого бензина. Если смесь, содержащая 70% изооктана, ведет себя так же, как исследуемый бензин, то говорят, что последний имеет октановое число 70 (октановое число изооктана принято за 100; октановое число н-гептана принято равным нулю).

Одним из путей повышения детонационной стойкости топлив для двигателей с зажиганием от искры является применение антидетона­торов.

Антидетонаторы — это вещества, которые добавляют к бензинам (не более 0,5%) для улучшения аптидетопацнонных свойств. Доста­точно эффективным антидетонатором является тетраэтилсвинец (ТЭС) РЬ (C2H5)4

Однако бензин с ТЭС и продукты его сгорания очень токсичны. В настоящее время найдены новые антидетонаторы на основе марганец-органических соединений типа циклопентадиеиклпснтакарбонилмарганца С5Н5Мn (СО)5: они менее токсичны и обладают лучшими анти­детонационными свойствами. Добавление этих антидетонаторов к хоро­шим сортам бензина позволяет получать топливо с октановым числом до 135.

Для ракетных и дизельных двигателей, наоборот, наиболее ценны топлива с нормальной цепью углеродных атомов, обладающие наиболее низкой температурой воспламенения. Эту характеристику принято

оценивать в цетановых числах. Цетановое число 100 имеет углеводород н-Сц,Нд4, а цетаповое число 0 — 1-метилнафталин.

^ Синтез углеводородов из CO+H2. Пропуская над мелко раздробленным нике­лем смесь окиси углерода (II) и водорода при 250° С, можно получить метан:

СО+ЗН2СН4+Н2О

Если эту реакцию проводить при давлении 100—200 атм и температуре до 400°С, получается смесь, состоящая главным образом из кислородсодержащих продуктов, среди которых преобладают спирты; смесь эта была названа счшполом.

При применении железо-кобальтовых катализаторов и температуре 200° С образуется смесь алканов — синтин.

nСО + (2n + 1) Н2 СnН2n + 2 + H2О

Синтин и синтол являются продуктами многотоннажного органического синтеза и широко используются в качестве сырья для многих химических производств.

Клатраты. Синтин и бензиновые фракции нефти состоят из смесей углеводо­родов нормального строения и с разветвленными цепями. Недавно был найден эффек­тивный метод разделения органических соединений с нормальными цепями и развет­вленных, получивший в общем случае название метода клатратного разделения. Для разделения углеводородов была использована мочевина. Кристаллы мочевины построены таким образом, что внутри кристаллов имеются узкие шестигранные ка­налы. Диаметр этих каналов таков, что внутрь их может пройти и задержаться за счет адсорбционных сил только углеводород нормального строения. Поэтому при обработке смеси органических соединений мочевиной (или некоторыми другими соеди­нениями) вещества с нормальной цепью углеродных атомов кристаллизуются вместе с ней в виде комплексов. Этот метод имеет, безусловно, очень большое будущее — когда будет найдено большее число эффективных клатратообразователей.



referat-tu-160.html
referat-uchebnij-predmet-biotehnologii.html
referat-uchenici-8-a-klassa.html
referat-uchenici.html
referat-uchenika-8-b-klassa-ivanova-nikolaya-na-temu-nekotorie-svedeniya-o-vode.html
referat-udk-629-067-8-stranica-2.html
  • letter.bystrickaya.ru/metodicheskoe-posobie-po-samopodgotovke-i-vipolneniyu-kontrolnih-rabot-dlya-studentov-iv-kursa-zaochnogo-fakulteta-farmakognoziya.html
  • uchit.bystrickaya.ru/trebovaniya-k-urovnyu-usvoeniya-disciplini-realizaciya-rabochej-programmi-osushestvlyaetsya-s-ispolzovaniem-uchebno-metodicheskogo.html
  • spur.bystrickaya.ru/konspekt-lekcij-po-discipline-setevie-tehnologii-dopolnennaya-versiya-dlya-studentov-specialnosti-050102-stranica-9.html
  • lecture.bystrickaya.ru/4-obshaya-trudoemkost-disciplini-sostavlyaet-2-zachetnie-edinici-1-cel-disciplini-sformirovat-u-studentov-celostnoe.html
  • knowledge.bystrickaya.ru/nazvanie-razrabotchik.html
  • urok.bystrickaya.ru/programma-disciplini-analiz-nestrukturirovannoj-informacii-dlya-napravleniya-080500-68-biznes-informatika.html
  • shkola.bystrickaya.ru/nalog-na-dobavlennuyu-stoimost-sushnost-poryadok-otrazheniya-na-schetah-buhgalterskogo-ucheta-chast-3.html
  • bukva.bystrickaya.ru/profil-biologiya-annotaciya-k-programmam-disciplin-modulej-stranica-8.html
  • kolledzh.bystrickaya.ru/anufriev-v-e-a73-buhgalterskij-uchet-osnovnih-sredstv-kapitala-i-pri-bili-ucheb-posobie-stranica-5.html
  • literature.bystrickaya.ru/e-yu-selihova-deloproizvodstvo-i-arhivnoe-delo-v-bankovskoj-sfere-e-yu-selihova.html
  • reading.bystrickaya.ru/literaturnoe-chtenie-osnovnaya-obrazovatelnaya-programma-nachalnogo-obshego-obrazovaniya-gosudarstvennogo-obrazovatelnogo.html
  • lesson.bystrickaya.ru/teplovoj-raschet-dvigatelya.html
  • spur.bystrickaya.ru/literatura-36.html
  • paragraf.bystrickaya.ru/zadanie-3-metodicheskie-rekomendacii-po-razrabotke-zadanij-dlya-shkolnogo-i-municipalnogo-etapov.html
  • learn.bystrickaya.ru/fundamenti-voznesenskogo-sobora-obekti-kulturnogo-naslediya-pamyatniki-istorii-i-kulturi-regionalnogo-udmurtskoj.html
  • shkola.bystrickaya.ru/torgovie-puti-mezhdu-rossiej-i-kitaem-i-potoki-drevesini.html
  • desk.bystrickaya.ru/osnovnie-vidi-sociologicheskih-issledovanij.html
  • learn.bystrickaya.ru/glava-9-otdaj-dushu-za-dushu-oko-za-oko-zub-za-zub-ruku-za-ruku-nogu-za-nogu-obozhzhenie-za-obozhzhenie.html
  • upbringing.bystrickaya.ru/materialnie-poteri-leningradskaya-organizaciya-vsesoyuznogo-dobrovolnogo-obshestva-borbi-za-trezvost-vsesoyuznoe.html
  • studies.bystrickaya.ru/logisticheskoe-upravlenie-tovarnimi-zapasami-v-apteke-chast-6.html
  • grade.bystrickaya.ru/metodika-sostavleniya-smet-v-dorozhnom-stroitelstve-pech-stranica-4.html
  • urok.bystrickaya.ru/pravila-dlya-uchashihsya.html
  • shkola.bystrickaya.ru/pravila-promishlennoj-bezopasnosti-dlya-vzrivopozharoopasnih-proizvodstvennih-obektov-hraneniya-pererabotki-i-ispolzovaniya-rastitelnogo-sirya-stranica-4.html
  • thescience.bystrickaya.ru/i43-forma-finansovogo-predlozheniya-klinicheskaya-bolnica-51-federalnogo-mediko-biologicheskogo-agentstva.html
  • letter.bystrickaya.ru/multimedijnie-tehnologii-v-obuchenii-perevodu-inostrannih-tekstov-frazeologii-i-idiomatike.html
  • kolledzh.bystrickaya.ru/52-koncepciya-intellektualnogo-kapitala-rozhkov-g-v-r63-genezis-innovacionnoj-ekonomiki-v-rossii-pod-red-sgeroshenkova.html
  • notebook.bystrickaya.ru/klassnaya-amerika-ajrat-dimiev-oglavlenie-predislovie-glava-kak-vse-nachinalos-kaprizi-sudbi.html
  • institute.bystrickaya.ru/glava-7-vzglyad-na-vostok-strani-musulmanskogo-mira-kitaj-ii-hiii-veka-istoriya-iskusstva-ernst-gombrih.html
  • knowledge.bystrickaya.ru/nalichie-kvalificirovannih-prepodavatelej-doklad-2010g.html
  • lecture.bystrickaya.ru/aleksandrovskij-yua-pogranichnie-psihicheskie-rasstrojstva-pri-somaticheskih-zabolevaniyah.html
  • otsenki.bystrickaya.ru/sekciya-arhivovedeniya-i-specialnihistoricheskih-disciplin-programma-58-j-nauchnoj-studencheskoj-konferencii-petrozavodsk.html
  • shpargalka.bystrickaya.ru/v-n-ivanov-tajni-gibeli-civilizacij-stranica-14.html
  • znanie.bystrickaya.ru/balmanskie-vstrechi-sbornik-statej-i-materialov-posvyashyonnih-tradicionnoj-kulture-novosibirskogo-priobya-novosibirsk.html
  • writing.bystrickaya.ru/15-fevralya-2012-g-n-14-o-raschetnih-balansovih-pokazatelyah-prognoza-socialno-ekonomicheskogo-razvitiya-respubliki-belarus-na-2012-god-stranica-2.html
  • college.bystrickaya.ru/11-struchni-tim-ukuchen-u-rad-produzhenog-boravka-aneks-shkolskog-programa-20102011-godine-sadrzha-.html
  • © bystrickaya.ru
    Мобильный рефератник - для мобильных людей.